10.4 Find Probabilities of Disjoint and Overlapping Events

Example: Siblings-

brother

21 here today

Sister brother 8

P(5015)-20

Example:

A card is randomly selected from a deck of cards. What is the probability that it is a face card or a spade?

s. What is the probability that it is a face or a spade?

face card or spade
$$\frac{12}{52} + \frac{13}{52} - \frac{3}{52}$$
overlap

COMPOUND EVENT: the union (or) or intersection (and) of 2 events.

Two events are OVERLAPPING if they have one or more outcomes in common.

Ex: The probability of rolling a six or an even number on a standard 6 sided die.

Two events are DISJOINT or MUTUALLY EXCLUSIVE if they have no events in common: Ex: The probability of rolling a six or an odd number on a standard 6 sided die.

If A and B are disjoint events, then the probability of A or B is:

$$P(A \text{ or } B) = P(A) + P(B)$$

If A and B are overlapping events, then the probability of A or B is:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Example: Find the indicated probability. Are A and B mutually exclusive?

a)
$$P(A) = 0.4$$

 $P(B) = 0.35$
 $P(A \text{ OR } B) = 0.5$
 $P(A \text{ OR } B) = 0.5$

a)
$$P(A) = 0.4$$

 $P(B) = 0.35$
 $P(A \circ B) = 0.5$
P(A or B) = 0.5
P(A or B) = 7/12
P(A or B) = 7/12
Since
P(A or B) = P(A or B)
P(A or B) = P(A or B)

Example: A card is randomly selected from a standard deck of 52 cards. Find the probability of drawing a face card or a diamond.

Example: Out of 200 students in a senior class, there are 74 who are varsity athletes, 51 who are on the honor roll and 12 who are both. Draw a venn diagram. What is the probability that a randomly selected senior is either a varsity athlete or on the honor roll?

the honor roll?

$$\frac{1}{62} = \frac{1}{12} = \frac{1}{39}$$
The honor roll?

$$\frac{1}{2} = \frac{1}{200}$$
The honor roll?

$$P(V_{or}H) = P(V) + P(H) - P(V + H)$$

 $\frac{74}{200} + \frac{51}{200} - \frac{12}{100} = \frac{112}{200}$

Complements: The event \overline{A} , called the complement of event A, consists of all outcomes that are not in A. (read A bar)

Probability of the complement:

The probability of the complement of A is $P(\overline{A}) = 1 - P(A)$

Example: There are 10 people at a dinner party. Find the probability that at least 2 people have the same birthday.

Pg 710 4 - 14 even, 16 - 25, 28 - 30, 43(draw Venn diagram), 49

DISJOINT EVENTS Events A and B are disjoint. Find P(A or B).

3.
$$P(A) = 0.3, P(B) = 0.1$$

4.
$$P(A) = 0.55, P(B) = 0.2$$

3.
$$P(A) = 0.3, P(B) = 0.1$$
 4. $P(A) = 0.55, P(B) = 0.2$ **5.** $P(A) = 0.41, P(B) = 0.24$

6.
$$P(A) = \frac{2}{5}$$
, $P(B) = \frac{3}{5}$ **7.** $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$ **8.** $P(A) = \frac{2}{3}$, $P(B) = \frac{1}{5}$

7.
$$P(A) = \frac{1}{3}, P(B) = \frac{1}{4}$$

8.
$$P(A) = \frac{2}{3}$$
, $P(B) = \frac{1}{5}$

OVERLAPPING EVENTS Find the indicated probability.

9.
$$P(A) = 0.5$$
, $P(B) = 0.35$
 $P(A \text{ and } B) = 0.2$
 $P(A \text{ or } B) = 2$

10.
$$P(A) = 0.6$$
, $P(B) = 0.2$
 $P(A \text{ or } B) = 0.7$
 $P(A \text{ and } B) = 2$

P(A) = 0.28,
$$P(B)$$
 = 0.64
P(A or B) = 0.71
P(A and B) = ?

12.
$$P(A) = 0.46, P(B) = 0.37$$

13.
$$P(A) = \frac{2}{7}, P(B) = \frac{2}{7}$$

12.
$$P(A) = 0.46, P(B) = 0.37$$
 13. $P(A) = \frac{2}{7}, P(B) = \frac{4}{7}$ **14.** $P(A) = \frac{6}{11}, P(B) = \frac{3}{11}$

$$P(A \text{ and } B) = 0.31$$

$$P(A \text{ and } B) = \frac{1}{7}$$

$$P(A \text{ or } B) = \frac{7}{11}$$

$$P(A \text{ or } B) = \underline{?}$$

$$P(A \text{ or } B) = \underline{?}$$

$$P(A \text{ and } B) = \underline{?}$$

FINDING PROBABILITIES OF COMPLEMENTS Find $P(\overline{A})$.

16.
$$P(A) = 0.5$$

17.
$$P(A) = 0$$

18.
$$P(A) = \frac{1}{3}$$

16.
$$P(A) = 0.5$$
 17. $P(A) = 0$ **18.** $P(A) = \frac{1}{3}$ **19.** $P(A) = \frac{5}{8}$

CHOOSING CARDS A card is randomly selected from a standard deck of 52 cards. Find the probability of drawing the given card.

- 20. A king and a diamond
- (21.) A king or a diamond
 - 22. A spade or a club

23. A 4 or a 5

- 24. A 6 and a face card
- 25. Not a heart