9.3 Law Of Sines

Write 3 different equations for K, the area of the triangle.

$$\frac{1}{2} - 4 \sin \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

$$\frac{1}{2} \cos \beta = \frac{1}{2} \log 4 \sin A$$

Law of Sines:

In
$$\triangle ABC$$
, $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

Example:

Solve
$$\triangle ABC$$
, if $\leq A = 63^{\circ}$, $\leq B = 49$, and $c = 78$.

Solve ΔRST if $\langle S = 40^{\circ}$, r = 30, and s = 20. Give the angle measures to the nearest tenth degree and the lengths rounded to the

nearest tenth.

$$\frac{\sin 40}{20} = \frac{\sin 65.4}{+}$$

Solve $\triangle ABC$ if $< A = 30^{\circ}$, b = 10 and a = 4. Give the angle measures to the nearest tenth degree and the lengths rounded to the nearest tenth.

$$\frac{\sin 30}{4} = \frac{\sin \beta}{10}$$

$$\frac{10\sin 30}{4} = \sin 3$$

Example: From two points P and Q that are 140 ft apart, the lines of sight to a flagpole across a river make angles of 79° and 58° respectively, with the line joining P and Q. What are the distances from P and Q to the flagpole?

$$\frac{P}{43} = \frac{140}{58} = \frac{51079}{P}$$
 $A = PAA$
 $A = PAA$
 $A = PAA$

