7.5 Properties of Logarithms

$$
\log _{b} m n=\log _{b} m+\log _{b} n
$$

Proof:

$$
\begin{aligned}
& \text { let } x=\log _{b} m \text { and } y=\log _{b} n \\
& b^{x}=m \quad b^{y}=n \\
& m \cdot n=b^{x} \cdot b^{y} \\
& m n=b^{x+y} \\
& \log _{b} m n=x+y \\
& \log _{b} m n=\log _{b} m+\log _{b} n
\end{aligned}
$$

Example: Write in expanded form $\log _{3} \times \mathrm{V}$

$$
\log _{3} x+\log _{3} y
$$

$$
\log _{\mathrm{b}} \frac{\mathrm{~m}}{\mathrm{n}}=\log _{\mathrm{b}} \mathrm{~m}-\log _{\mathrm{b}} \mathrm{n}
$$

Example: Write in expanded form $\log _{7} \frac{2}{y}$

$$
\log _{7} 2-\log _{7} y
$$

Example: Write in expanded form $\log _{5} \mathrm{X}^{2}$
$2 \log _{5} x$

Examples- Write in expanded form:

$$
\begin{aligned}
& \text { 1. } \log _{8} \frac{2 x}{y} \\
& \log _{8} 2 x-\log _{8} y \\
& \log _{8} 2+\log _{8} x-\log _{8} y \\
& \text { 3. } \log _{2} \sqrt{x} \quad \frac{1}{2} \log _{2} x \\
& \log _{2} x \sqrt{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \log _{7} \frac{3 x^{2}}{5 y^{3}} \\
& \log _{7} 3 x^{2}-\log _{7} 5 y^{3} \\
& \log _{7} 3+2 \log _{7} x-\left[\log _{7} 5+3 \log _{7} y\right]
\end{aligned}
$$

Examples- Write in condensed form:

1. $\ln 5-\ln 8$

$$
\ln \frac{5}{8}
$$

2. $\log x+2 \log y$

$$
\log x y^{2}
$$

Evaluate: $\log _{4} 16+\log _{4} \frac{1}{4}$

$$
\begin{gathered}
2+(-1)=1 \\
\log _{4}\left(16 \cdot \frac{1}{4}\right) \\
\log _{4} 4
\end{gathered}
$$

Evaluate: $\log _{4} 8+\log _{4} 8$

$$
\log _{4} 64=3
$$

$$
\begin{aligned}
& \operatorname{Pg} 510 \quad \text { A } \quad 29 \\
& 3-6,15,18,20,21,24,29-33,35,38, \\
& 41-44,
\end{aligned}
$$

