QUIZ for Lessons 7.1–7.3

1, 2, 4 - 8, 13

Graph the function. State the domain and range.

1.
$$y = 2 \cdot 3^{x-2}$$
 (p. 478)

1.
$$y = 2 \cdot 3^{x-2}$$
 (p. 478) 2. $y = \left(\frac{2}{5}\right)^x$ (p. 486)

3.
$$f(x) = \left(\frac{3}{8}\right)^x + 2 (p. 486)$$

Simplify the expression. (p. 492)

5.
$$(-5e^{3x})^3$$

6.
$$\frac{e^{4x}}{5e}$$

7.
$$\frac{8e^{5x}}{6e^{2x}}$$

Graph the function. State the domain and range. (p. 492)

8.
$$y = 2e^x$$

9.
$$y = 3e^{-2x}$$

10.
$$y = e^{x+1} - 2$$

10.
$$y = e^{x+1} - 2$$
 11. $g(x) = 4e^{-3x} + 1$

- 12. TV SALES From 1997 to 2001, the number n (in millions) of black-and-white TVs sold in the United States can be modeled by $n = 26.8(0.85)^{t}$ where t is the number of years since 1997. Identify the decay factor and the percent decrease. Graph the model and state the domain and range. Estimate the number of black-and-white TVs sold in 1999. (p. 478)
- 13. FINANCE You deposit \$1200 in an account that pays 4.5% annual interest compounded continuously. What is the balance after 5 years? (p. 492)

7.4 Evaluate Logarithms and Graph Logarithmic Functions

Definition of Logarithm with base b:

Let b and y be positive numbers, $b \neq 1$.

The logarithm of y with base b is written $log_b y = x$

$$log_b y = x$$
 if and only if $b^x = y$.

log_by is read "log base b of y

$$logs = exponents$$

logs = exponents

Example: Rewrite in exponential form:

a)
$$\log_3 81 = 4$$

a)
$$\log_3 81 = 4$$
 b) $\log_2 7 = 1$ c) $\log_4 1 = 0$

Example: Rewrite in logarithmic form:

a)
$$3^2 = 9$$

$$\mathbf{b}) \left(\frac{1}{2}\right)^{-2} = 4$$

b)
$$\left(\frac{1}{2}\right)^{-2} = 4$$

$$\log_{\frac{1}{2}} 4 = -2$$

logs = exponents

Example: Evaluate

a)
$$\log_3 27 = 3$$

a)
$$\log_3 27 = 3$$
 b) $\log_{1/2} 2 = -1$ c) $\log_4 2 = -\frac{1}{2}$ $\log_3 27 = x$ $(\frac{1}{2})^{-1} = 2$

Using your calculator:

 \log button means \log_{10} known as common \log

In button means log_e known as natural log

 $\log 100$ means $\log_{10}100$, what should the answer be? Try it.

Example: Evaluate with calculator

Example: Find the inverse.

a)
$$y = 8^x$$

$$x = 8^x$$

$$\log_8 x = y$$

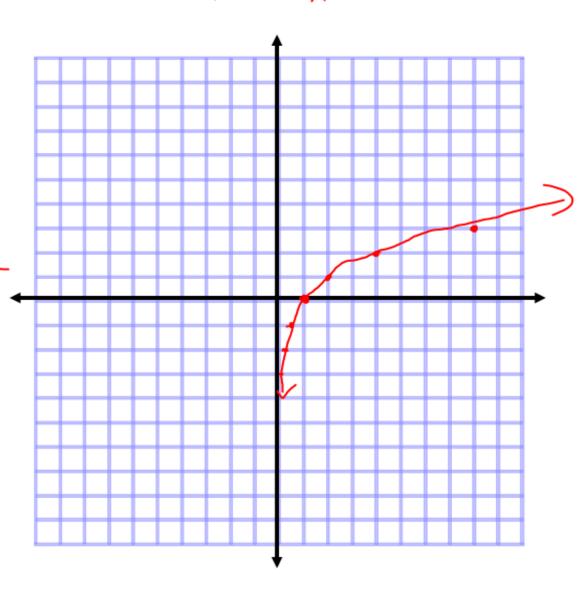
b)
$$y = log_3(x - 4)$$

 $x = log_3(y - 4)$
 $3^x = y - 4$
 $3^x + 4 = y$

Inverse properties:

$$log_b x = y$$
 and $b^x = y$ are inverses

so:
$$\log_b(b^x) = x$$
 and $b^{\log_b x} = x$


 $log_2x = y$

 $2^{y} = x$

R: all real #5

ωη", ×= Φ

7.4d.gwb - 9/9 - Tue Feb 11 2014 12:25:32

A#26

Pg 503

4, 6, 8, 9, 12 – 14, 19, 22, 26, 28, 29, 34, 38, 40, 41, 45, 51, 46, 52

EXPONENTIAL FORM Rewrite the equation in exponential form.

- **4.** $\log_7 343 = 3$
- **6.** $\log_{64} 1 = 0$

EVALUATING LOGARITHMS Evaluate the logarithm without using a calculator.

- **8.** log₁₅ 15
- 9. log₇ 49
- 12. log₉ 1
- $\log_{1/2} 8$ 14. $\log_3 \frac{1}{27}$

19. log₁₁ 121

CALCULATING LOGARITHMS Use a calculator to evaluate the logarithm.

- **22.** ln 0.43
- 26. log 0.746

USING INVERSE PROPERTIES Simplify the expression.

29.
$$\log_5 5^x$$
 34. $\log_5 125^x$