### 7.3 Functions Involving e

Evaluate $\left(1+\frac{1}{n}\right)^{n}$
for $\mathrm{n}=1, \mathrm{n}=10, \mathrm{n}=100, \mathrm{n}=1000, \mathrm{n}=10,000, \mathrm{n}=100,000$

The natural base e is irrational and is defined as
the value as $\mathrm{n} \rightarrow \infty,\left(1+\frac{1}{n}\right)^{n}$ $\mathrm{e} \approx 2.71828 \ldots$

Example:
$e^{9} \cdot e^{2}$
$e^{11}$

Example:
$\frac{60 e^{8}}{12 e^{3}} \quad 5 e^{5}$

Example:
$\left(-10 \mathrm{e}^{-5 x}\right)^{3} \quad \frac{-1000}{e^{15 x}}$

## Example:

Evaluate with a calculator: $e^{6}$

$$
\mathrm{e}^{-0.28}
$$

We learned about compound interest in 7.1.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

as $\mathrm{n} \rightarrow \infty$, the formula becomes
$\mathrm{A}=\mathrm{Pe}^{\mathrm{rt}}$, compounded continuously.

Example: You deposit $\$ 2500$ in an account that pays $5 \%$ annual interest compounded continuously. Find the balance after 5 years.

Graphing natural base functions:
Graph: $y=e^{x}$


## $\operatorname{Pg} 4954-16$ even, 19, 20, 27, $31-34,56,58,68$

SIMPLIFYING EXPRESSIONS Simplify the expression.
3. $e^{3} \cdot e^{4}$
4. $e^{-2} \cdot e^{6}$
(5.) $\left(2 e^{3 x}\right)^{3}$
6. $\left(2 e^{-2}\right)^{-4}$
7. $\left(3 e^{5 x}\right)^{-1}$
8. $e^{x} \cdot e^{-3 x} \cdot e^{4}$
9. $\sqrt{9 e}$
10. $e^{x} \cdot 5 e^{x+3}$
11. $\frac{3 e}{e^{x}}$
12. $\frac{4 e^{x}}{e^{4 x}}$
13. $\sqrt[3]{8 e^{9 x}}$
14. $\frac{6 e^{4 x}}{8 e}$
15. $\star$ MULTIPLE CHOICE What is the simplified form of $\left(4 e^{2 x}\right)^{3}$ ?
(A) $4 e^{6 x}$
(B) $4 e^{8 x}$
(C) $64 e^{6 x}$
(D) 64
16. $\star$ MULTIPLE CHOICE What is the simplified form of $\sqrt{\frac{4\left(27 e^{13} x\right)}{3 e^{7} x^{-3}}}$ ?
(A) $6 e^{10} x$
(B) $6 e^{6} x^{4}$
(C) $\frac{6 e^{3}}{x^{2}}$
(D) $6 e^{3} x^{2}$

EVALUATING EXPRESSIONS Use a calculator to evaluate the expression.
19. $e^{3}$
20. $e^{-3 / 4}$
22. $e^{1 / 2}$
27. $2 e^{-0.3}$

GROWTH OR DECAY Tell whether the function is an example of exponential growth or exponential decay.
31. $f(x)=3 e^{-x}$
32. $f(x)=\frac{1}{3} e^{4 x}$
33. $f(x)=e^{-4 x}$
34. $f(x)=\frac{3}{5} e^{x}$
56. BIOLOGY Scientists used traps to study the Formosan subterranean termite
population in New Orleans. The mean number $y$ of termites collected annually can be modeled by $y=738 e^{0.345 t}$ where $t$ is the number of years since 1989. What was the mean number of termites collected in 1999?
@HomeTiutor for problem solving help at classzonecom
58. FINANCE You deposit $\$ 800$ in an account that pays $2.65 \%$ annual interest compounded continuously. What is the balance after 12.5 years?
68. $\sqrt{ } 15 x+34=x+6(p .452)$

