5-4
The Number e and the Function e^x

	1		1	\setminus^n		
lim Vx→∞	1	+	_	.	=	е
Vx→∞			n			

Fill in the chart:

1 111 111 till ville ville ti				
n	$\left(1+\frac{1}{n}\right)^n$			
10	2.5937			
100	2,7648			
1000	2,7169			
10000	2,7181			
100000				

Applications in physics, statistics, calculus

Compound Interest:

Suppose you invest P dollars (the principal) at 12% annual interest.

- If interest is compounded semiannually, then 6% is added each 6 months. P(1.06)²
- If interest is compounded quarterly, then 3% is added each 3 months, $P(1.03)^4$
- If interest is compounded monthly, then 1% is added each month $P(1.01)^{12}$

compounded n times per year for t years

 P(t) = Pert compounded continuously for t years

$$\left(1+\frac{1}{n}\right)^{n}=e$$

Example:

If you invest \$15,000 at 8% annual interest rate, how much will you have at the end of 10 years if:

- a) compounded quarterly? N = 4 + 10, V = .08 = 15.000 $15000(1+\frac{34}{4})^{4-10} = 33,120.60$
- b) compounded monthly?

c) compounded continuously?

| 15,000 e. 08(10) | 33,383.11

d) What is the effective annual yield?

Effective annual yield: the actual percentage rate earned per year.

Example: Two hundred dollars deposited in a bank that compounds interest monthly yields \$210.23 over 1 year. Find the effective annual yield.

$$210.23 = 200 (1+r)^{1}$$
 $1.051 = 1+r$
 $051 = 6$
 $r = 5.1\%$

Pg 189 2, 4, 5, 7, 10 – 12.

- 2a. Evaluate $\left(1 \frac{1}{n}\right)^n$ for n = 100, n = 10,000 and n = 1,000,000.
- b. Compare your answers in part a) with an approximation for e^{-1} .
- 4. Evaluate: a. $e^{0.08}$ b. $e^{-0.08}$ c. $e^{4/3}$
- 5. Suppose you invest \$1.00 at 6% annual interest. Calculate the amount that you would have alter one year if the interest is compounded
 - a) quarterly b) monthly c) continuously
- 7. One hundred dollars deposited in a bank that compounds interest quarterly yields \$107.50 over 1 year. Find the effective annual yield.
- 10. With which plan would an investor earn more, Plan A or Plan B?

Plan A: An 8% annual rate compounded quarterly for 5 years.

Plan B: A 7.5% annual rate compounded daily for 5 years.