10-3 Double-Angle and Half-Angle Formulas

Double Angle Formula

$$
\sin 2 \alpha
$$

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& \sin (\alpha+\alpha)=\sin \alpha \cos \alpha+\cos \alpha \sin \alpha \\
& \sin (2 \alpha)=2 \sin \alpha \cos \alpha
\end{aligned}
$$

$$
\begin{aligned}
\cos (\alpha+\beta)= & \cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\cos 2 \alpha= & \cos \alpha \cos \alpha-\sin \alpha \sin \alpha \\
L= & \left.\cos ^{2} \alpha-\sin ^{2} \alpha\right) \\
& \left.\frac{1-\sin ^{2} \alpha-\sin ^{2} \alpha}{}+2 \sin ^{2} \alpha\right] \\
& \cos ^{2} \alpha-\left(1-\cos ^{2} \alpha\right) \\
& \cos ^{2} \alpha-1+\cos ^{2} \alpha \\
& 2 \cos ^{2} \alpha-1
\end{aligned}
$$

Double Angle Formula
$\sin 2 \alpha=2 \sin \alpha \cos \alpha$
$\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$
$=1-2 \sin ^{2} \alpha$
$=2 \cos ^{2} \alpha-1$
$\tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}$

Example: If $\sin \alpha=\frac{-4}{5}, 270^{\circ} \leq \alpha \leq 360^{\circ}$, find $\sin 2 \alpha, \cos 2 \alpha, \tan 2 \alpha$

$$
\begin{aligned}
\cos 2 \alpha= & 1-2 \sin ^{2} \alpha \\
= & 1-2\left(-\frac{4}{5}\right)^{2} \\
1 & -2\left(\frac{16}{25}\right) \\
1 & -\frac{32}{25} \\
& \frac{-7}{25}
\end{aligned}
$$

Example: Simplify: $\frac{2 \tan 157.5^{\circ}}{1-\tan ^{2} 157.5^{\circ}}=\tan (2.157 .5)$

$$
\tan 315
$$

$$
-1
$$

Half-Angle Formula

$$
\begin{aligned}
\sin \frac{\alpha}{2} & = \pm \sqrt{\frac{1-\cos \alpha}{2}} \\
\cos \frac{\alpha}{2} & = \pm \sqrt{\frac{1+\cos \alpha}{2}} \\
\tan \frac{\alpha}{2} & = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}} \\
& =\frac{\sin \alpha}{1+\cos \alpha} \\
& =\frac{1-\cos \alpha}{\sin \alpha}
\end{aligned}
$$

Example: Evaluate $\sin \left(67.5^{\circ}\right)$

$$
\begin{aligned}
& \sin \left(\left(\frac{135^{\circ}}{2}\right)=\sqrt{\frac{1-\cos 135}{2}}\right. \\
& =\sqrt{\frac{1-\left(\frac{\sqrt{2}}{2}\right)}{2}}=\sqrt{\frac{\frac{2+\sqrt{2}}{2}}{2}} \\
& \sqrt{\frac{2+\sqrt{2}}{4}}=\frac{\sqrt{2+\sqrt{2}}}{2}
\end{aligned}
$$

Example: Evaluate $\cos \frac{\pi}{8}$

A\#27

Pg 3831-25 odd

